654 research outputs found

    The Galaxy in Context: Structural, Kinematic and Integrated Properties

    Full text link
    Our Galaxy, the Milky Way, is a benchmark for understanding disk galaxies. It is the only galaxy whose formation history can be studied using the full distribution of stars from white dwarfs to supergiants. The oldest components provide us with unique insight into how galaxies form and evolve over billions of years. The Galaxy is a luminous (L-star) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo. Based on global properties, it falls in the sparsely populated "green valley" region of the galaxy colour-magnitude diagram. Here we review the key integrated, structural and kinematic parameters of the Galaxy, and point to uncertainties as well as directions for future progress. Galactic studies will continue to play a fundamental role far into the future because there are measurements that can only be made in the near field and much of contemporary astrophysics depends on such observations.Comment: 69 pages, 18 figures, LaTeX. See http://www.physics.usyd.edu.au/~jbh/S/ARAA_2016.pdf for published versio

    Measuring Outer Disk Warps with Optical Spectroscopy

    Full text link
    Warps in the outer gaseous disks of galaxies are a ubiquitous phenomenon, but it is unclear what generates them. One theory is that warps are generated internally through spontaneous bending instabilities. Other theories suggest that they result from the interaction of the outer disk with accreting extragalactic material. In this case, we expect to find cases where the circular velocity of the warp gas is poorly correlated with the rotational velocity of the galaxy disk at the same radius. Optical spectroscopy presents itself as an interesting alternative to 21-cm observations for testing this prediction, because (i) separating the kinematics of the warp from those of the disk requires a spatial resolution that is higher than what is achieved at 21 cm at low HI column density; (ii) optical spectroscopy also provides important information on star formation rates, gas excitation, and chemical abundances, which provide clues to the origin of the gas in warps. We present here preliminary results of a study of the kinematics of gas in the outer-disk warps of seven edge-on galaxies, using multi-hour VLT/FORS2 spectroscopy.Comment: 7 pages, 7 figures; to appear in the proceedings of IAU Symposium 254 "The Galaxy disk in a cosmological context", Copenhagen, June 200

    Microslit Nod-shuffle Spectroscopy - a technique for achieving very high densities of spectra

    Get PDF
    We describe a new approach to obtaining very high surface densities of optical spectra in astronomical observations with extremely accurate subtraction of night sky emission. The observing technique requires that the telescope is nodded rapidly between targets and adjacent sky positions; object and sky spectra are recorded on adjacent regions of a low-noise CCD through charge shuffling. This permits the use of extremely high densities of small slit apertures (`microslits') since an extended slit is not required for sky interpolation. The overall multi-object advantage of this technique is as large as 2.9x that of conventional multi-slit observing for an instrument configuration which has an underfilled CCD detector and is always >1.5 for high target densities. The `nod-shuffle' technique has been practically implemented at the Anglo-Australian Telescope as the `LDSS++ project' and achieves sky-subtraction accuracies as good as 0.04%, with even better performance possible. This is a factor of ten better than is routinely achieved with long-slits. LDSS++ has been used in various observational modes, which we describe, and for a wide variety of astronomical projects. The nod-shuffle approach should be of great benefit to most spectroscopic (e.g. long-slit, fiber, integral field) methods and would allow much deeper spectroscopy on very large telescopes (10m or greater) than is currently possible. Finally we discuss the prospects of using nod-shuffle to pursue extremely long spectroscopic exposures (many days) and of mimicking nod-shuffle observations with infrared arrays.Comment: Accepted for publication in PASP; 25 pages, 12 figures. A higher-quality compressed Postscript file (2.2Mb) is available from http://www.pha.jhu.edu/~kgb/papers/nodshuffle2000hq.ps.g

    Astrophysical signatures of leptonium

    Full text link
    More than 10^43 positrons annihilate every second in the centre of our Galaxy yet, despite four decades of observations, their origin is still unknown. Many candidates have been proposed, such as supernovae and low mass X-ray binaries. However, these models are difficult to reconcile with the distribution of positrons, which are highly concentrated in the Galactic bulge, and therefore require specific propagation of the positrons through the interstellar medium. Alternative sources include dark matter decay, or the supermassive black hole, both of which would have a naturally high bulge-to-disc ratio. The chief difficulty in reconciling models with the observations is the intrinsically poor angular resolution of gamma-ray observations, which cannot resolve point sources. Essentially all of the positrons annihilate via the formation of positronium. This gives rise to the possibility of observing recombination lines of positronium emitted before the atom annihilates. These emission lines would be in the UV and the NIR, giving an increase in angular resolution of a factor of 10^4 compared to gamma ray observations, and allowing the discrimination between point sources and truly diffuse emission. Analogously to the formation of positronium, it is possible to form atoms of true muonium and true tauonium. Since muons and tauons are intrinsically unstable, the formation of such leptonium atoms will be localised to their places of origin. Thus observations of true muonium or true tauonium can provide another way to distinguish between truly diffuse sources such as dark matter decay, and an unresolved distribution of point sources.Comment: Accepted for publication in EPJ-D, 9 pages, 4 figure
    corecore